The Fermat Numbers form a sequence in the form
Fn = (2^(2^n)) + 1, n = 0, 1, 2, …
or Fn = pow(2,(pow(2,n))) + 1
or Fn = pow(2,(pow(2,n))) + 1
The number of digits for a Fermat number is
D(Fn) = └[log (2^(2^n))+ 1)] + 1┘
D(Fn) = └[log (2^(2^n))] + 1┘
D(Fn) = 1 + └2^n log 2┘
or D(Fn) = 1 + floor((2^n) log 2)
D(Fn) = └[log (2^(2^n))+ 1)] + 1┘
D(Fn) = └[log (2^(2^n))] + 1┘
D(Fn) = 1 + └2^n log 2┘
or D(Fn) = 1 + floor((2^n) log 2)
The first few Fermat numbers are:
F0 = 2^(2^0) + 1 = (2^1) + 1 = 2 + 1 = 3
F1 = 2^(2^1) + 1 = (2^2) + 1 = 4 + 1 = 5,
F2 = 2^(2^2) + 1 = (2^4) + 1 = 16 + 1 = 17,
F3 = 2^(2^3) + 1 = (2^8) + 1 = 256 + 1 = 257,
F4 = 2^(2^4) + 1 = (2^16) + 1 = 65536 + 1 = 65537
F1 = 2^(2^1) + 1 = (2^2) + 1 = 4 + 1 = 5,
F2 = 2^(2^2) + 1 = (2^4) + 1 = 16 + 1 = 17,
F3 = 2^(2^3) + 1 = (2^8) + 1 = 256 + 1 = 257,
F4 = 2^(2^4) + 1 = (2^16) + 1 = 65536 + 1 = 65537
The corresponding number of digits:
D(F0) = 1 +└(2^0) log 2┘= 1 +└1 log 2┘= 1 + 0 = 1
D(F1) = 1 +└(2^1) log 2┘= 1 +└2 log 2┘= 1 + 0 = 1
D(F2) = 1 +└(2^2) log 2┘= 1 +└4 log 2┘= 1 + 1 = 2
D(F3) = 1 +└(2^3) log 2┘= 1 +└8 log 2┘= 1 + 2 = 3
D(F4) = 1 +└(2^4) log 2┘= 1+└16 log 2┘= 1+ 4 = 5
D(F1) = 1 +└(2^1) log 2┘= 1 +└2 log 2┘= 1 + 0 = 1
D(F2) = 1 +└(2^2) log 2┘= 1 +└4 log 2┘= 1 + 1 = 2
D(F3) = 1 +└(2^3) log 2┘= 1 +└8 log 2┘= 1 + 2 = 3
D(F4) = 1 +└(2^4) log 2┘= 1+└16 log 2┘= 1+ 4 = 5
These numbers are more popularly known as Fermat primes.
F5, F6, F7, F8, F9, F10 and F11 are factorable numbers. F11 being the largest known Fermat number to be factored out.
F5, F6, F7, F8, F9, F10 and F11 are factorable numbers. F11 being the largest known Fermat number to be factored out.
I have created a PHP code for computing the number of digits found in a Fermat number, and the Fermat Number itself if possible.
Download Here!!
Daghang salamat sa pagbasa!!!
No comments:
Post a Comment