About Me

My photo
Iloilo City, Region VI ILOILO, Philippines
No longer as young but still struggling to write things

Thursday, March 9, 2017

Fermat Numbers



The Fermat Numbers form a sequence in the form
Fn = (2^(2^n)) + 1, n = 0, 1, 2, …
or Fn = pow(2,(pow(2,n))) + 1
The number of digits for a Fermat number is
D(Fn) = └[log (2^(2^n))+ 1)] + 1┘
D(Fn) = └[log (2^(2^n))] + 1┘
D(Fn) = 1 + └2^n log 2┘
or D(Fn) = 1 + floor((2^n) log 2)
The first few Fermat numbers are:
F0 = 2^(2^0) + 1 = (2^1) + 1 = 2 + 1 = 3
F1 = 2^(2^1) + 1 = (2^2) + 1 = 4 + 1 = 5,
F2 = 2^(2^2) + 1 = (2^4) + 1 = 16 + 1 = 17,
F3 = 2^(2^3) + 1 = (2^8) + 1 = 256 + 1 = 257,
F4 = 2^(2^4) + 1 = (2^16) + 1 = 65536 + 1 = 65537
The corresponding number of digits:
D(F0) = 1 +└(2^0) log 2┘= 1 +└1 log 2┘= 1 + 0 = 1
D(F1) = 1 +└(2^1) log 2┘= 1 +└2 log 2┘= 1 + 0 = 1
D(F2) = 1 +└(2^2) log 2┘= 1 +└4 log 2┘= 1 + 1 = 2
D(F3) = 1 +└(2^3) log 2┘= 1 +└8 log 2┘= 1 + 2 = 3
D(F4) = 1 +└(2^4) log 2┘= 1+└16 log 2┘= 1+ 4 = 5
These numbers are more popularly known as Fermat primes.
F5, F6, F7, F8, F9, F10 and F11 are factorable numbers. F11 being the largest known Fermat number to be factored out.
I have created a PHP code for computing the number of digits found in a Fermat number, and the Fermat Number itself if possible.

Download Here!! 


Daghang salamat sa pagbasa!!!

No comments: