![]() |
Pierre de Fermat |
In his method, Fermat assumes that n is odd and observed that the search for factors of n is equivalent to obtaining the integral solutions of x and y of the equation n = (x^2) – (y^2) = (x – y) (x + y)
If n has a factorization n = ab, a ≥ b ≥ 1
We may write n = ((a+b)/2)^2 – ((a-b)/2)^2 ; (a+b)/2 > 0 and (a-b)/2 > 0
We may write n = ((a+b)/2)^2 – ((a-b)/2)^2 ; (a+b)/2 > 0 and (a-b)/2 > 0
We then determine the smallest integer k for which k^2 ≥ n, k^2 – n, (k+1)^2 – n, (k+2)^2 – n, … until a value of m ≥ √n is found making m^2 – n a square.
We know that this process cannot go on indefinitely, we know we will eventually arrive at ((n+1)/2)^2 – n = ((n-1)/2)^2, the representation of n corresponding to the trivial factorization n = n ∙ 1. Meaning that n is a prime.
Examples:
1. n = 2027651281, k= 45030
45030^2 – 2027651281 = 49619
45031^2 – 2027651281 = 139680
45032^2 – 2027651281 = 229743
45033^2 – 2027651281 = 319808
45034^2 – 2027651281 = 409875
45035^2 – 2027651281 = 499944
45036^2 – 2027651281 = 590015
45037^2 – 2027651281 = 680088
45038^2 – 2027651281 = 770163
45039^2 – 2027651281 = 860240
45040^2 – 2027651281 = 950319
45041^2 – 2027651281 = 1040400 = 1020^2
=> 2027651281 = 45041^2 – 1020^2
=> 2027651281 = (45041+1020)(45041–1020)
=> 2027651281 = (46061)(44021)
1. n = 2027651281, k= 45030
45030^2 – 2027651281 = 49619
45031^2 – 2027651281 = 139680
45032^2 – 2027651281 = 229743
45033^2 – 2027651281 = 319808
45034^2 – 2027651281 = 409875
45035^2 – 2027651281 = 499944
45036^2 – 2027651281 = 590015
45037^2 – 2027651281 = 680088
45038^2 – 2027651281 = 770163
45039^2 – 2027651281 = 860240
45040^2 – 2027651281 = 950319
45041^2 – 2027651281 = 1040400 = 1020^2
=> 2027651281 = 45041^2 – 1020^2
=> 2027651281 = (45041+1020)(45041–1020)
=> 2027651281 = (46061)(44021)
2. n = 17, k = 5
5^2 – 17 = 8
6^2 – 17 = 19
7^2 – 17 = 32
8^2 – 17 = 47
9^2 – 17 = 64 = 8^2
=> 17 = 9^2 – 8^2
=> 17 = (9 + 8)(9 – 8)
=> 17 = (17)(1)
NOTE:
Squares must end in 0, 1, 4, 5, 6, and 9
And from 0-99 (mod 100) ends in 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96
Daghang salamat sa pagbasa!!!